Performance of Smoothing Methods for Reconstructing NDVI Time-Series and Estimating Vegetation Phenology from MODIS Data

نویسندگان

  • Zhanzhang Cai
  • Per Jönsson
  • Hongxiao Jin
  • Lars Eklundh
چکیده

Many time-series smoothing methods can be used for reducing noise and extracting plant phenological parameters from remotely-sensed data, but there is still no conclusive evidence in favor of one method over others. Here we use moderate-resolution imaging spectroradiometer (MODIS) derived normalized difference vegetation index (NDVI) to investigate five smoothing methods: Savitzky-Golay fitting (SG), locally weighted regression scatterplot smoothing (LO), spline smoothing (SP), asymmetric Gaussian function fitting (AG), and double logistic function fitting (DL). We use ground tower measured NDVI (10 sites) and gross primary productivity (GPP, 4 sites) to evaluate the smoothed satellite-derived NDVI time-series, and elevation data to evaluate phenology parameters derived from smoothed NDVI. The results indicate that all smoothing methods can reduce noise and improve signal quality, but that no single method always performs better than others. Overall, the local filtering methods (SG and LO) can generate very accurate results if smoothing parameters are optimally calibrated. If local calibration cannot be performed, cross validation is a way to automatically determine the smoothing parameter. However, this method may in some cases generate poor fits, and when calibration is not possible the function fitting methods (AG and DL) provide the most robust description of the seasonal dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alpine Grassland Phenology as Seen in AVHRR, VEGETATION, and MODIS NDVI Time Series - a Comparison with In Situ Measurements

This study evaluates the ability to track grassland growth phenology in the Swiss Alps with NOAA-16 Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) time series. Three growth parameters from 15 alpine and subalpine grassland sites were investigated between 2001 and 2005: Melt-Out (MO), Start Of Growth (SOG), and End Of Growth (EOG).We tried to estim...

متن کامل

Analysis of the effect of drought on the phenology parameters of vegetation indexes from the time series of MODIS sensor images (case study: Hamadan province)

Drought is one of the consequences of climate change that slowly and over a relatively long period of time affects climate, environment, agriculture, vegetation, water resources and even economic and social sectors. The serious outcome of drought is the reduction of vegetation cover. In this research, using MODIS sensor satellite images of 2001-2020 (20-year period) and CHIRPS monthly rainfall ...

متن کامل

Spatio-Temporal Reconstruction of MODIS NDVI Data Sets Based on Data Assimilation Methods

Consistent Normalized Difference of Vegetation Index (NDVI) time series, as paramount and powerful tool, can be used to monitor ecological resources that are being altered by climate and human impacts, since its temporal evolution is strongly linked to changes in the state of land surface. However, the noise caused mainly by cloud contamination, heavy aerosol, atmospheric variability and signal...

متن کامل

Detecting Inter-Annual Variations in the Phenology of Evergreen Conifers Using Long-Term MODIS Vegetation Index Time Series

Long-term observations of vegetation phenology can be used to monitor the response of terrestrial ecosystems to climate change. Satellite remote sensing provides the most efficient means to observe phenological events through time series analysis of vegetation indices such as the Normalized Difference Vegetation Index (NDVI). This study investigates the potential of a Photochemical Reflectance ...

متن کامل

Effects of Different Methods on the Comparison between Land Surface and Ground Phenology - A Methodological Case Study from South-Western Germany

Several methods exist for extracting plant phenological information from time series of satellite data. However, there have been only a few successful attempts to temporarily match satellite observations (Land Surface Phenology or LSP) with ground based phenological observations (Ground Phenology or GP). The classical pixel to point matching problem along with the temporal and spatial resolutio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017